Solar System by apparent polar diameter

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Solar System objects sorted by decreasing apparent polar diameter (polar angular diameter).

list

1. Planet III Terra: δ = 180°
2. Star Sol: δp = 31.920548923284083741997194931945' = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {a_\mathrm{🜨} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
3. Terran Satellite I Luna: δp = 31.580165489645637940487966617458' = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
4. Planet V Jupiter: δp = 34.736187234895211100447615213044" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
5. Planet VI Saturn: δp = 15.501667362042194294966203210650" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
6. Planet II Venus: δp = 13.522292763889732782075156095712" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 1.0054506984964605247906355638423' = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {a_\mathrm{🜨} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
7. Planet I Mercury: δp = 6.2697361133227842087743385256592" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 10.969591499763819427952423865415" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {a_\mathrm{🜨} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
8. Planet IV Mars: δp = 5.1085080826869896814787495395767" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
9. Planet VII Uranus: δp = 3.5835136598560523132304774636404" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
10. Planet VIII Neptune: δp = 2.2309780633955307690723727220933" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
11. Jovian Satellite III Ganymede: δp = 1.3705678536729296420641623384737" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 1.3724210256198444739044691611984" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
12. Jovian Satellite IV Callisto: δp = 1.2542816935672386199682744208677" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 1.2572677027292330924821053944132" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
13. Jovian Satellite I Io: δp = 0.94509864661346713233226891995622" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 0.94559965605230578136590081661216" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
14. Jovian Satellite II Europa: δp = 0.81190359888560613374657313535298" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 0.81259131978851491280107395453298" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♃}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
15. Saturnian Satellite VI Titan: δp = 0.73691456293876801205809823824166" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♄}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,transit = 0.73753981495486210980388239795154" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♄}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$
16. Minor Planet 1 Ceres: δp = 0.41753343283063327014727731698934" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$

notes

• δp,Vesta = 0.24000819502324194424118176848316" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$ [Minor Planet 4 Vesta]
• δp,Rhea = 0.21795641974552450585454700789838" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♄}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,RheaTransit = 0.21803614881745382705477048885644" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♄}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$ [Saturnian Satellite V Rhea]
• δp,Pallas = 0.20968846407255300104805915289715" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$ [Minor Planet 2 Pallas]
• δp,Iapetus = 0.20458995250702567961919743641594" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♄}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,IapetusTransit = 0.20509665521726423828994131864717" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♄}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$ [Saturnian Satellite VIII Iapetus]
• δp,Triton = 0.12401859762852024218133875810357" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♆}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,TritonTransit = 0.12402837351670037923759622773235" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{♆}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$ [Neptunian Satellite I Triton]
• δp,Titania = 0.11311789066885177678766982396711" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{⛢}^2 + a_\mathrm{🜨}^2} - r_{\mathrm{e},\mathrm{🜨}}} \right) }$; δp,TitaniaTransit = 0.11313504513490315697087061110757" = $\displaystyle{ 2\operatorname{asin}\left( \frac {r_\mathrm{p}} {\sqrt{a_\mathrm{⛢}^2 + a_\mathrm{🜨}^2} - a - r_{\mathrm{e},\mathrm{🜨}}} \right) }$ [Uranian Satellite III Titania]